Metamath Proof Explorer


Theorem dfac8clem

Description: Lemma for dfac8c . (Contributed by Mario Carneiro, 10-Jan-2013)

Ref Expression
Hypothesis dfac8clem.1 F = s A ι a s | b s ¬ b r a
Assertion dfac8clem A B r r We A f z A z f z z

Proof

Step Hyp Ref Expression
1 dfac8clem.1 F = s A ι a s | b s ¬ b r a
2 eldifsn s A s A s
3 elssuni s A s A
4 3 ad2antrl A B r We A s A s s A
5 simplr A B r We A s A s r We A
6 vex r V
7 exse2 r V r Se A
8 6 7 mp1i A B r We A s A s r Se A
9 simprr A B r We A s A s s
10 wereu2 r We A r Se A s A s ∃! a s b s ¬ b r a
11 5 8 4 9 10 syl22anc A B r We A s A s ∃! a s b s ¬ b r a
12 riotacl ∃! a s b s ¬ b r a ι a s | b s ¬ b r a s
13 11 12 syl A B r We A s A s ι a s | b s ¬ b r a s
14 4 13 sseldd A B r We A s A s ι a s | b s ¬ b r a A
15 2 14 sylan2b A B r We A s A ι a s | b s ¬ b r a A
16 15 1 fmptd A B r We A F : A A
17 difexg A B A V
18 17 adantr A B r We A A V
19 uniexg A B A V
20 19 adantr A B r We A A V
21 fex2 F : A A A V A V F V
22 16 18 20 21 syl3anc A B r We A F V
23 riotaex ι a s | b s ¬ b r a V
24 1 fvmpt2 s A ι a s | b s ¬ b r a V F s = ι a s | b s ¬ b r a
25 23 24 mpan2 s A F s = ι a s | b s ¬ b r a
26 2 25 sylbir s A s F s = ι a s | b s ¬ b r a
27 26 adantl A B r We A s A s F s = ι a s | b s ¬ b r a
28 27 13 eqeltrd A B r We A s A s F s s
29 28 expr A B r We A s A s F s s
30 29 ralrimiva A B r We A s A s F s s
31 nfv s z
32 nfmpt1 _ s s A ι a s | b s ¬ b r a
33 1 32 nfcxfr _ s F
34 nfcv _ s z
35 33 34 nffv _ s F z
36 35 nfel1 s F z z
37 31 36 nfim s z F z z
38 nfv z s F s s
39 neeq1 z = s z s
40 fveq2 z = s F z = F s
41 id z = s z = s
42 40 41 eleq12d z = s F z z F s s
43 39 42 imbi12d z = s z F z z s F s s
44 37 38 43 cbvralw z A z F z z s A s F s s
45 30 44 sylibr A B r We A z A z F z z
46 fveq1 f = F f z = F z
47 46 eleq1d f = F f z z F z z
48 47 imbi2d f = F z f z z z F z z
49 48 ralbidv f = F z A z f z z z A z F z z
50 22 45 49 spcedv A B r We A f z A z f z z
51 50 ex A B r We A f z A z f z z
52 51 exlimdv A B r r We A f z A z f z z