Metamath Proof Explorer


Theorem dfbi1

Description: Relate the biconditional connective to primitive connectives. See dfbi1ALT for an unusual version proved directly from axioms. (Contributed by NM, 29-Dec-1992)

Ref Expression
Assertion dfbi1 φ ψ ¬ φ ψ ¬ ψ φ

Proof

Step Hyp Ref Expression
1 df-bi ¬ φ ψ ¬ φ ψ ¬ ψ φ ¬ ¬ φ ψ ¬ ψ φ φ ψ
2 impbi φ ψ ¬ φ ψ ¬ ψ φ ¬ φ ψ ¬ ψ φ φ ψ φ ψ ¬ φ ψ ¬ ψ φ
3 2 con3rr3 ¬ φ ψ ¬ φ ψ ¬ ψ φ φ ψ ¬ φ ψ ¬ ψ φ ¬ ¬ φ ψ ¬ ψ φ φ ψ
4 1 3 mt3 φ ψ ¬ φ ψ ¬ ψ φ