Metamath Proof Explorer


Theorem dfbi3

Description: An alternate definition of the biconditional. Theorem *5.23 of WhiteheadRussell p. 124. (Contributed by NM, 27-Jun-2002) (Proof shortened by Wolf Lammen, 3-Nov-2013) (Proof shortened by NM, 29-Oct-2021)

Ref Expression
Assertion dfbi3 φ ψ φ ψ ¬ φ ¬ ψ

Proof

Step Hyp Ref Expression
1 con34b ψ φ ¬ φ ¬ ψ
2 1 anbi2i φ ψ ψ φ φ ψ ¬ φ ¬ ψ
3 dfbi2 φ ψ φ ψ ψ φ
4 cases2 φ ψ ¬ φ ¬ ψ φ ψ ¬ φ ¬ ψ
5 2 3 4 3bitr4i φ ψ φ ψ ¬ φ ¬ ψ