Metamath Proof Explorer


Theorem dfclnbgr2

Description: Alternate definition of the closed neighborhood of a vertex breaking up the subset relationship of an unordered pair. (Contributed by AV, 7-May-2025)

Ref Expression
Hypotheses clnbgrval.v V = Vtx G
clnbgrval.e E = Edg G
Assertion dfclnbgr2 Could not format assertion : No typesetting found for |- ( N e. V -> ( G ClNeighbVtx N ) = ( { N } u. { n e. V | E. e e. E ( N e. e /\ n e. e ) } ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 clnbgrval.v V = Vtx G
2 clnbgrval.e E = Edg G
3 1 2 clnbgrval Could not format ( N e. V -> ( G ClNeighbVtx N ) = ( { N } u. { n e. V | E. e e. E { N , n } C_ e } ) ) : No typesetting found for |- ( N e. V -> ( G ClNeighbVtx N ) = ( { N } u. { n e. V | E. e e. E { N , n } C_ e } ) ) with typecode |-
4 prssg N V n V N e n e N n e
5 4 elvd N V N e n e N n e
6 5 bicomd N V N n e N e n e
7 6 rexbidv N V e E N n e e E N e n e
8 7 rabbidv N V n V | e E N n e = n V | e E N e n e
9 8 uneq2d N V N n V | e E N n e = N n V | e E N e n e
10 3 9 eqtrd Could not format ( N e. V -> ( G ClNeighbVtx N ) = ( { N } u. { n e. V | E. e e. E ( N e. e /\ n e. e ) } ) ) : No typesetting found for |- ( N e. V -> ( G ClNeighbVtx N ) = ( { N } u. { n e. V | E. e e. E ( N e. e /\ n e. e ) } ) ) with typecode |-