Metamath Proof Explorer


Theorem dfcnv2

Description: Alternative definition of the converse of a relation. (Contributed by Thierry Arnoux, 31-Mar-2018)

Ref Expression
Assertion dfcnv2 ran R A R -1 = x A x × R -1 x

Proof

Step Hyp Ref Expression
1 relcnv Rel R -1
2 relxp Rel x × R -1 x
3 2 rgenw x A Rel x × R -1 x
4 reliun Rel x A x × R -1 x x A Rel x × R -1 x
5 3 4 mpbir Rel x A x × R -1 x
6 vex z V
7 vex y V
8 6 7 opeldm z y R -1 z dom R -1
9 df-rn ran R = dom R -1
10 8 9 eleqtrrdi z y R -1 z ran R
11 ssel2 ran R A z ran R z A
12 10 11 sylan2 ran R A z y R -1 z A
13 12 ex ran R A z y R -1 z A
14 13 pm4.71rd ran R A z y R -1 z A z y R -1
15 6 7 elimasn y R -1 z z y R -1
16 15 anbi2i z A y R -1 z z A z y R -1
17 14 16 bitr4di ran R A z y R -1 z A y R -1 z
18 sneq x = z x = z
19 18 imaeq2d x = z R -1 x = R -1 z
20 19 opeliunxp2 z y x A x × R -1 x z A y R -1 z
21 17 20 bitr4di ran R A z y R -1 z y x A x × R -1 x
22 1 5 21 eqrelrdv ran R A R -1 = x A x × R -1 x