Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|
2 |
|
simpll |
|
3 |
|
simplrl |
|
4 |
|
simpr1 |
|
5 |
|
simplrr |
|
6 |
|
simpr2 |
|
7 |
|
simpr3 |
|
8 |
1 2 3 4 5 6 7
|
conndisj |
|
9 |
8
|
ex |
|
10 |
9
|
ralrimivva |
|
11 |
|
topontop |
|
12 |
1
|
cldopn |
|
13 |
12
|
adantl |
|
14 |
|
df-3an |
|
15 |
|
ineq2 |
|
16 |
|
disjdif |
|
17 |
15 16
|
eqtrdi |
|
18 |
17
|
biantrud |
|
19 |
|
neeq1 |
|
20 |
19
|
anbi2d |
|
21 |
18 20
|
bitr3d |
|
22 |
14 21
|
syl5bb |
|
23 |
|
uneq2 |
|
24 |
|
undif2 |
|
25 |
23 24
|
eqtrdi |
|
26 |
25
|
neeq1d |
|
27 |
22 26
|
imbi12d |
|
28 |
27
|
rspcv |
|
29 |
13 28
|
syl |
|
30 |
1
|
cldss |
|
31 |
30
|
adantl |
|
32 |
|
ssequn1 |
|
33 |
31 32
|
sylib |
|
34 |
|
ssdif0 |
|
35 |
|
idd |
|
36 |
35 31
|
jctild |
|
37 |
|
eqss |
|
38 |
36 37
|
syl6ibr |
|
39 |
34 38
|
syl5bir |
|
40 |
33 39
|
embantd |
|
41 |
40
|
orim2d |
|
42 |
|
impexp |
|
43 |
|
df-ne |
|
44 |
|
id |
|
45 |
44
|
necon4d |
|
46 |
|
id |
|
47 |
46
|
necon3d |
|
48 |
45 47
|
impbii |
|
49 |
43 48
|
imbi12i |
|
50 |
|
pm4.64 |
|
51 |
49 50
|
bitri |
|
52 |
42 51
|
bitri |
|
53 |
|
vex |
|
54 |
53
|
elpr |
|
55 |
41 52 54
|
3imtr4g |
|
56 |
29 55
|
syld |
|
57 |
56
|
ex |
|
58 |
57
|
com23 |
|
59 |
58
|
imim2d |
|
60 |
|
elin |
|
61 |
60
|
imbi1i |
|
62 |
|
impexp |
|
63 |
61 62
|
bitri |
|
64 |
59 63
|
syl6ibr |
|
65 |
64
|
alimdv |
|
66 |
|
df-ral |
|
67 |
|
dfss2 |
|
68 |
65 66 67
|
3imtr4g |
|
69 |
1
|
isconn2 |
|
70 |
69
|
baib |
|
71 |
68 70
|
sylibrd |
|
72 |
11 71
|
syl |
|
73 |
10 72
|
impbid2 |
|
74 |
|
toponuni |
|
75 |
74
|
neeq2d |
|
76 |
75
|
imbi2d |
|
77 |
76
|
2ralbidv |
|
78 |
73 77
|
bitr4d |
|