Metamath Proof Explorer


Theorem dfdec100

Description: Split the hundreds from a decimal value. (Contributed by Thierry Arnoux, 25-Dec-2021)

Ref Expression
Hypotheses dfdec100.a A 0
dfdec100.b B 0
dfdec100.c C
Assertion dfdec100 Could not format assertion : No typesetting found for |- ; ; A B C = ( ( ; ; 1 0 0 x. A ) + ; B C ) with typecode |-

Proof

Step Hyp Ref Expression
1 dfdec100.a A 0
2 dfdec100.b B 0
3 dfdec100.c C
4 dfdec10 Could not format ; B C = ( ( ; 1 0 x. B ) + C ) : No typesetting found for |- ; B C = ( ( ; 1 0 x. B ) + C ) with typecode |-
5 4 oveq2i Could not format ( ( ; ; 1 0 0 x. A ) + ; B C ) = ( ( ; ; 1 0 0 x. A ) + ( ( ; 1 0 x. B ) + C ) ) : No typesetting found for |- ( ( ; ; 1 0 0 x. A ) + ; B C ) = ( ( ; ; 1 0 0 x. A ) + ( ( ; 1 0 x. B ) + C ) ) with typecode |-
6 10nn0 10 0
7 6 dec0u 10 10 = 100
8 6 nn0cni 10
9 8 8 mulcli 10 10
10 7 9 eqeltrri 100
11 1 nn0cni A
12 10 11 mulcli 100 A
13 2 nn0cni B
14 8 13 mulcli 10 B
15 3 recni C
16 12 14 15 addassi 100 A + 10 B + C = 100 A + 10 B + C
17 dfdec10 Could not format ; ; A B C = ( ( ; 1 0 x. ; A B ) + C ) : No typesetting found for |- ; ; A B C = ( ( ; 1 0 x. ; A B ) + C ) with typecode |-
18 dfdec10 Could not format ; A B = ( ( ; 1 0 x. A ) + B ) : No typesetting found for |- ; A B = ( ( ; 1 0 x. A ) + B ) with typecode |-
19 18 oveq2i Could not format ( ; 1 0 x. ; A B ) = ( ; 1 0 x. ( ( ; 1 0 x. A ) + B ) ) : No typesetting found for |- ( ; 1 0 x. ; A B ) = ( ; 1 0 x. ( ( ; 1 0 x. A ) + B ) ) with typecode |-
20 8 11 mulcli 10 A
21 8 20 13 adddii 10 10 A + B = 10 10 A + 10 B
22 8 8 11 mulassi 10 10 A = 10 10 A
23 7 oveq1i 10 10 A = 100 A
24 22 23 eqtr3i 10 10 A = 100 A
25 24 oveq1i 10 10 A + 10 B = 100 A + 10 B
26 19 21 25 3eqtri Could not format ( ; 1 0 x. ; A B ) = ( ( ; ; 1 0 0 x. A ) + ( ; 1 0 x. B ) ) : No typesetting found for |- ( ; 1 0 x. ; A B ) = ( ( ; ; 1 0 0 x. A ) + ( ; 1 0 x. B ) ) with typecode |-
27 26 oveq1i Could not format ( ( ; 1 0 x. ; A B ) + C ) = ( ( ( ; ; 1 0 0 x. A ) + ( ; 1 0 x. B ) ) + C ) : No typesetting found for |- ( ( ; 1 0 x. ; A B ) + C ) = ( ( ( ; ; 1 0 0 x. A ) + ( ; 1 0 x. B ) ) + C ) with typecode |-
28 17 27 eqtr2i Could not format ( ( ( ; ; 1 0 0 x. A ) + ( ; 1 0 x. B ) ) + C ) = ; ; A B C : No typesetting found for |- ( ( ( ; ; 1 0 0 x. A ) + ( ; 1 0 x. B ) ) + C ) = ; ; A B C with typecode |-
29 5 16 28 3eqtr2ri Could not format ; ; A B C = ( ( ; ; 1 0 0 x. A ) + ; B C ) : No typesetting found for |- ; ; A B C = ( ( ; ; 1 0 0 x. A ) + ; B C ) with typecode |-