Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Define basic set operations and relations
dfdif2
Next ⟩
eldif
Metamath Proof Explorer
Ascii
Unicode
Theorem
dfdif2
Description:
Alternate definition of class difference.
(Contributed by
NM
, 25-Mar-2004)
Ref
Expression
Assertion
dfdif2
⊢
A
∖
B
=
x
∈
A
|
¬
x
∈
B
Proof
Step
Hyp
Ref
Expression
1
df-dif
⊢
A
∖
B
=
x
|
x
∈
A
∧
¬
x
∈
B
2
df-rab
⊢
x
∈
A
|
¬
x
∈
B
=
x
|
x
∈
A
∧
¬
x
∈
B
3
1
2
eqtr4i
⊢
A
∖
B
=
x
∈
A
|
¬
x
∈
B