Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Disjointness
dfdisj2
Next ⟩
disjss2
Metamath Proof Explorer
Ascii
Unicode
Theorem
dfdisj2
Description:
Alternate definition for disjoint classes.
(Contributed by
NM
, 17-Jun-2017)
Ref
Expression
Assertion
dfdisj2
⊢
Disj
x
∈
A
B
↔
∀
y
∃
*
x
x
∈
A
∧
y
∈
B
Proof
Step
Hyp
Ref
Expression
1
df-disj
⊢
Disj
x
∈
A
B
↔
∀
y
∃
*
x
∈
A
y
∈
B
2
df-rmo
⊢
∃
*
x
∈
A
y
∈
B
↔
∃
*
x
x
∈
A
∧
y
∈
B
3
2
albii
⊢
∀
y
∃
*
x
∈
A
y
∈
B
↔
∀
y
∃
*
x
x
∈
A
∧
y
∈
B
4
1
3
bitri
⊢
Disj
x
∈
A
B
↔
∀
y
∃
*
x
x
∈
A
∧
y
∈
B