Metamath Proof Explorer


Theorem dfdm2

Description: Alternate definition of domain df-dm that doesn't require dummy variables. (Contributed by NM, 2-Aug-2010)

Ref Expression
Assertion dfdm2 dom A = A -1 A

Proof

Step Hyp Ref Expression
1 cnvco A -1 A -1 = A -1 A -1 -1
2 cocnvcnv2 A -1 A -1 -1 = A -1 A
3 1 2 eqtri A -1 A -1 = A -1 A
4 3 unieqi A -1 A -1 = A -1 A
5 4 unieqi A -1 A -1 = A -1 A
6 unidmrn A -1 A -1 = dom A -1 A ran A -1 A
7 5 6 eqtr3i A -1 A = dom A -1 A ran A -1 A
8 df-rn ran A = dom A -1
9 8 eqcomi dom A -1 = ran A
10 dmcoeq dom A -1 = ran A dom A -1 A = dom A
11 9 10 ax-mp dom A -1 A = dom A
12 rncoeq dom A -1 = ran A ran A -1 A = ran A -1
13 9 12 ax-mp ran A -1 A = ran A -1
14 dfdm4 dom A = ran A -1
15 13 14 eqtr4i ran A -1 A = dom A
16 11 15 uneq12i dom A -1 A ran A -1 A = dom A dom A
17 unidm dom A dom A = dom A
18 7 16 17 3eqtrri dom A = A -1 A