Metamath Proof Explorer


Theorem dfdm3

Description: Alternate definition of domain. Definition 6.5(1) of TakeutiZaring p. 24. (Contributed by NM, 28-Dec-1996)

Ref Expression
Assertion dfdm3 dom A = x | y x y A

Proof

Step Hyp Ref Expression
1 df-dm dom A = x | y x A y
2 df-br x A y x y A
3 2 exbii y x A y y x y A
4 3 abbii x | y x A y = x | y x y A
5 1 4 eqtri dom A = x | y x y A