Metamath Proof Explorer


Theorem dfdm4

Description: Alternate definition of domain. (Contributed by NM, 28-Dec-1996)

Ref Expression
Assertion dfdm4 dom A = ran A -1

Proof

Step Hyp Ref Expression
1 vex y V
2 vex x V
3 1 2 brcnv y A -1 x x A y
4 3 exbii y y A -1 x y x A y
5 4 abbii x | y y A -1 x = x | y x A y
6 dfrn2 ran A -1 = x | y y A -1 x
7 df-dm dom A = x | y x A y
8 5 6 7 3eqtr4ri dom A = ran A -1