Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
dfdm4
Next ⟩
dfdmf
Metamath Proof Explorer
Ascii
Unicode
Theorem
dfdm4
Description:
Alternate definition of domain.
(Contributed by
NM
, 28-Dec-1996)
Ref
Expression
Assertion
dfdm4
⊢
dom
⁡
A
=
ran
⁡
A
-1
Proof
Step
Hyp
Ref
Expression
1
vex
⊢
y
∈
V
2
vex
⊢
x
∈
V
3
1
2
brcnv
⊢
y
A
-1
x
↔
x
A
y
4
3
exbii
⊢
∃
y
y
A
-1
x
↔
∃
y
x
A
y
5
4
abbii
⊢
x
|
∃
y
y
A
-1
x
=
x
|
∃
y
x
A
y
6
dfrn2
⊢
ran
⁡
A
-1
=
x
|
∃
y
y
A
-1
x
7
df-dm
⊢
dom
⁡
A
=
x
|
∃
y
x
A
y
8
5
6
7
3eqtr4ri
⊢
dom
⁡
A
=
ran
⁡
A
-1