Metamath Proof Explorer


Theorem dfepfr

Description: An alternate way of saying that the membership relation is well-founded. (Contributed by NM, 17-Feb-2004) (Revised by Mario Carneiro, 23-Jun-2015)

Ref Expression
Assertion dfepfr E Fr A x x A x y x x y =

Proof

Step Hyp Ref Expression
1 dffr2 E Fr A x x A x y x z x | z E y =
2 epel z E y z y
3 2 rabbii z x | z E y = z x | z y
4 dfin5 x y = z x | z y
5 3 4 eqtr4i z x | z E y = x y
6 5 eqeq1i z x | z E y = x y =
7 6 rexbii y x z x | z E y = y x x y =
8 7 imbi2i x A x y x z x | z E y = x A x y x x y =
9 8 albii x x A x y x z x | z E y = x x A x y x x y =
10 1 9 bitri E Fr A x x A x y x x y =