Metamath Proof Explorer


Theorem dfeu

Description: Rederive df-eu from the old definition eu6 . (Contributed by NM, 23-Mar-1995) (Proof shortened by Wolf Lammen, 25-May-2019) (Proof shortened by BJ, 7-Oct-2022) (Proof modification is discouraged.) Use df-eu instead. (New usage is discouraged.)

Ref Expression
Assertion dfeu ∃! x φ x φ * x φ

Proof

Step Hyp Ref Expression
1 abai x φ ∃! x φ x φ x φ ∃! x φ
2 euex ∃! x φ x φ
3 2 pm4.71ri ∃! x φ x φ ∃! x φ
4 moeu * x φ x φ ∃! x φ
5 4 anbi2i x φ * x φ x φ x φ ∃! x φ
6 1 3 5 3bitr4i ∃! x φ x φ * x φ