Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Even and odd numbers
Alternate definitions using the "divides" relation
dfeven2
Next ⟩
dfodd3
Metamath Proof Explorer
Ascii
Unicode
Theorem
dfeven2
Description:
Alternate definition for even numbers.
(Contributed by
AV
, 18-Jun-2020)
Ref
Expression
Assertion
dfeven2
⊢
Even
=
z
∈
ℤ
|
2
∥
z
Proof
Step
Hyp
Ref
Expression
1
dfeven4
⊢
Even
=
z
∈
ℤ
|
∃
i
∈
ℤ
z
=
2
⁢
i
2
eqcom
⊢
z
=
2
⁢
i
↔
2
⁢
i
=
z
3
2cnd
⊢
z
∈
ℤ
∧
i
∈
ℤ
→
2
∈
ℂ
4
zcn
⊢
i
∈
ℤ
→
i
∈
ℂ
5
4
adantl
⊢
z
∈
ℤ
∧
i
∈
ℤ
→
i
∈
ℂ
6
3
5
mulcomd
⊢
z
∈
ℤ
∧
i
∈
ℤ
→
2
⁢
i
=
i
⋅
2
7
6
eqeq1d
⊢
z
∈
ℤ
∧
i
∈
ℤ
→
2
⁢
i
=
z
↔
i
⋅
2
=
z
8
2
7
syl5bb
⊢
z
∈
ℤ
∧
i
∈
ℤ
→
z
=
2
⁢
i
↔
i
⋅
2
=
z
9
8
rexbidva
⊢
z
∈
ℤ
→
∃
i
∈
ℤ
z
=
2
⁢
i
↔
∃
i
∈
ℤ
i
⋅
2
=
z
10
2z
⊢
2
∈
ℤ
11
divides
⊢
2
∈
ℤ
∧
z
∈
ℤ
→
2
∥
z
↔
∃
i
∈
ℤ
i
⋅
2
=
z
12
10
11
mpan
⊢
z
∈
ℤ
→
2
∥
z
↔
∃
i
∈
ℤ
i
⋅
2
=
z
13
9
12
bitr4d
⊢
z
∈
ℤ
→
∃
i
∈
ℤ
z
=
2
⁢
i
↔
2
∥
z
14
13
rabbiia
⊢
z
∈
ℤ
|
∃
i
∈
ℤ
z
=
2
⁢
i
=
z
∈
ℤ
|
2
∥
z
15
1
14
eqtri
⊢
Even
=
z
∈
ℤ
|
2
∥
z