Metamath Proof Explorer


Theorem dfeven2

Description: Alternate definition for even numbers. (Contributed by AV, 18-Jun-2020)

Ref Expression
Assertion dfeven2 Even = z | 2 z

Proof

Step Hyp Ref Expression
1 dfeven4 Even = z | i z = 2 i
2 eqcom z = 2 i 2 i = z
3 2cnd z i 2
4 zcn i i
5 4 adantl z i i
6 3 5 mulcomd z i 2 i = i 2
7 6 eqeq1d z i 2 i = z i 2 = z
8 2 7 syl5bb z i z = 2 i i 2 = z
9 8 rexbidva z i z = 2 i i i 2 = z
10 2z 2
11 divides 2 z 2 z i i 2 = z
12 10 11 mpan z 2 z i i 2 = z
13 9 12 bitr4d z i z = 2 i 2 z
14 13 rabbiia z | i z = 2 i = z | 2 z
15 1 14 eqtri Even = z | 2 z