Metamath Proof Explorer


Theorem dfeven4

Description: Alternate definition for even numbers. (Contributed by AV, 18-Jun-2020)

Ref Expression
Assertion dfeven4 Even = z | i z = 2 i

Proof

Step Hyp Ref Expression
1 df-even Even = z | z 2
2 simpr z z 2 z 2
3 oveq2 i = z 2 2 i = 2 z 2
4 3 eqeq2d i = z 2 z = 2 i z = 2 z 2
5 4 adantl z z 2 i = z 2 z = 2 i z = 2 z 2
6 zcn z z
7 6 adantr z z 2 z
8 2cnd z z 2 2
9 2ne0 2 0
10 9 a1i z z 2 2 0
11 7 8 10 divcan2d z z 2 2 z 2 = z
12 11 eqcomd z z 2 z = 2 z 2
13 2 5 12 rspcedvd z z 2 i z = 2 i
14 13 ex z z 2 i z = 2 i
15 oveq1 z = 2 i z 2 = 2 i 2
16 zcn i i
17 16 adantl z i i
18 2cnd z i 2
19 9 a1i z i 2 0
20 17 18 19 divcan3d z i 2 i 2 = i
21 15 20 sylan9eqr z i z = 2 i z 2 = i
22 simpr z i i
23 22 adantr z i z = 2 i i
24 21 23 eqeltrd z i z = 2 i z 2
25 24 rexlimdva2 z i z = 2 i z 2
26 14 25 impbid z z 2 i z = 2 i
27 26 rabbiia z | z 2 = z | i z = 2 i
28 1 27 eqtri Even = z | i z = 2 i