Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
dff12
Next ⟩
f1f
Metamath Proof Explorer
Ascii
Unicode
Theorem
dff12
Description:
Alternate definition of a one-to-one function.
(Contributed by
NM
, 31-Dec-1996)
Ref
Expression
Assertion
dff12
⊢
F
:
A
⟶
1-1
B
↔
F
:
A
⟶
B
∧
∀
y
∃
*
x
x
F
y
Proof
Step
Hyp
Ref
Expression
1
df-f1
⊢
F
:
A
⟶
1-1
B
↔
F
:
A
⟶
B
∧
Fun
⁡
F
-1
2
funcnv2
⊢
Fun
⁡
F
-1
↔
∀
y
∃
*
x
x
F
y
3
2
anbi2i
⊢
F
:
A
⟶
B
∧
Fun
⁡
F
-1
↔
F
:
A
⟶
B
∧
∀
y
∃
*
x
x
F
y
4
1
3
bitri
⊢
F
:
A
⟶
1-1
B
↔
F
:
A
⟶
B
∧
∀
y
∃
*
x
x
F
y