Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
dff2
Next ⟩
dff3
Metamath Proof Explorer
Ascii
Unicode
Theorem
dff2
Description:
Alternate definition of a mapping.
(Contributed by
NM
, 14-Nov-2007)
Ref
Expression
Assertion
dff2
⊢
F
:
A
⟶
B
↔
F
Fn
A
∧
F
⊆
A
×
B
Proof
Step
Hyp
Ref
Expression
1
ffn
⊢
F
:
A
⟶
B
→
F
Fn
A
2
fssxp
⊢
F
:
A
⟶
B
→
F
⊆
A
×
B
3
1
2
jca
⊢
F
:
A
⟶
B
→
F
Fn
A
∧
F
⊆
A
×
B
4
rnss
⊢
F
⊆
A
×
B
→
ran
⁡
F
⊆
ran
⁡
A
×
B
5
rnxpss
⊢
ran
⁡
A
×
B
⊆
B
6
4
5
sstrdi
⊢
F
⊆
A
×
B
→
ran
⁡
F
⊆
B
7
6
anim2i
⊢
F
Fn
A
∧
F
⊆
A
×
B
→
F
Fn
A
∧
ran
⁡
F
⊆
B
8
df-f
⊢
F
:
A
⟶
B
↔
F
Fn
A
∧
ran
⁡
F
⊆
B
9
7
8
sylibr
⊢
F
Fn
A
∧
F
⊆
A
×
B
→
F
:
A
⟶
B
10
3
9
impbii
⊢
F
:
A
⟶
B
↔
F
Fn
A
∧
F
⊆
A
×
B