| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fssxp |
|
| 2 |
|
ffun |
|
| 3 |
|
fdm |
|
| 4 |
3
|
eleq2d |
|
| 5 |
4
|
biimpar |
|
| 6 |
|
funfvop |
|
| 7 |
2 5 6
|
syl2an2r |
|
| 8 |
|
df-br |
|
| 9 |
7 8
|
sylibr |
|
| 10 |
|
fvex |
|
| 11 |
|
breq2 |
|
| 12 |
10 11
|
spcev |
|
| 13 |
9 12
|
syl |
|
| 14 |
|
funmo |
|
| 15 |
2 14
|
syl |
|
| 16 |
15
|
adantr |
|
| 17 |
|
df-eu |
|
| 18 |
13 16 17
|
sylanbrc |
|
| 19 |
18
|
ralrimiva |
|
| 20 |
1 19
|
jca |
|
| 21 |
|
xpss |
|
| 22 |
|
sstr |
|
| 23 |
21 22
|
mpan2 |
|
| 24 |
|
df-rel |
|
| 25 |
23 24
|
sylibr |
|
| 26 |
25
|
adantr |
|
| 27 |
|
df-ral |
|
| 28 |
|
eumo |
|
| 29 |
28
|
imim2i |
|
| 30 |
29
|
adantl |
|
| 31 |
|
df-br |
|
| 32 |
|
ssel |
|
| 33 |
31 32
|
biimtrid |
|
| 34 |
|
opelxp1 |
|
| 35 |
33 34
|
syl6 |
|
| 36 |
35
|
exlimdv |
|
| 37 |
36
|
con3d |
|
| 38 |
|
nexmo |
|
| 39 |
37 38
|
syl6 |
|
| 40 |
39
|
adantr |
|
| 41 |
30 40
|
pm2.61d |
|
| 42 |
41
|
ex |
|
| 43 |
42
|
alimdv |
|
| 44 |
27 43
|
biimtrid |
|
| 45 |
44
|
imp |
|
| 46 |
|
dffun6 |
|
| 47 |
26 45 46
|
sylanbrc |
|
| 48 |
|
dmss |
|
| 49 |
|
dmxpss |
|
| 50 |
48 49
|
sstrdi |
|
| 51 |
|
breq1 |
|
| 52 |
51
|
eubidv |
|
| 53 |
52
|
rspccv |
|
| 54 |
|
euex |
|
| 55 |
|
vex |
|
| 56 |
55
|
eldm |
|
| 57 |
54 56
|
sylibr |
|
| 58 |
53 57
|
syl6 |
|
| 59 |
58
|
ssrdv |
|
| 60 |
50 59
|
anim12i |
|
| 61 |
|
eqss |
|
| 62 |
60 61
|
sylibr |
|
| 63 |
|
df-fn |
|
| 64 |
47 62 63
|
sylanbrc |
|
| 65 |
|
rnss |
|
| 66 |
|
rnxpss |
|
| 67 |
65 66
|
sstrdi |
|
| 68 |
67
|
adantr |
|
| 69 |
|
df-f |
|
| 70 |
64 68 69
|
sylanbrc |
|
| 71 |
20 70
|
impbii |
|