Step |
Hyp |
Ref |
Expression |
1 |
|
elex |
|
2 |
|
vex |
|
3 |
|
elfi |
|
4 |
2 3
|
mpan |
|
5 |
4
|
biimpd |
|
6 |
|
df-rex |
|
7 |
|
fiint |
|
8 |
|
elinel1 |
|
9 |
8
|
elpwid |
|
10 |
9
|
3ad2ant2 |
|
11 |
|
simp1 |
|
12 |
10 11
|
sstrd |
|
13 |
|
eqvisset |
|
14 |
|
intex |
|
15 |
13 14
|
sylibr |
|
16 |
15
|
3ad2ant3 |
|
17 |
|
elinel2 |
|
18 |
17
|
3ad2ant2 |
|
19 |
12 16 18
|
3jca |
|
20 |
19
|
3expib |
|
21 |
|
pm2.27 |
|
22 |
20 21
|
syl6 |
|
23 |
|
eleq1 |
|
24 |
23
|
biimprd |
|
25 |
24
|
adantl |
|
26 |
25
|
a1i |
|
27 |
22 26
|
syldd |
|
28 |
27
|
com23 |
|
29 |
28
|
alimdv |
|
30 |
7 29
|
syl5bi |
|
31 |
30
|
imp |
|
32 |
|
19.23v |
|
33 |
31 32
|
sylib |
|
34 |
6 33
|
syl5bi |
|
35 |
5 34
|
sylan9 |
|
36 |
35
|
ssrdv |
|
37 |
36
|
ex |
|
38 |
37
|
alrimiv |
|
39 |
|
ssintab |
|
40 |
38 39
|
sylibr |
|
41 |
|
ssfii |
|
42 |
|
fiin |
|
43 |
42
|
rgen2 |
|
44 |
|
fvex |
|
45 |
|
sseq2 |
|
46 |
|
eleq2 |
|
47 |
46
|
raleqbi1dv |
|
48 |
47
|
raleqbi1dv |
|
49 |
45 48
|
anbi12d |
|
50 |
44 49
|
elab |
|
51 |
41 43 50
|
sylanblrc |
|
52 |
|
intss1 |
|
53 |
51 52
|
syl |
|
54 |
40 53
|
eqssd |
|
55 |
1 54
|
syl |
|