| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elex |
|
| 2 |
|
vex |
|
| 3 |
|
elfi |
|
| 4 |
2 3
|
mpan |
|
| 5 |
4
|
biimpd |
|
| 6 |
|
df-rex |
|
| 7 |
|
fiint |
|
| 8 |
|
elinel1 |
|
| 9 |
8
|
elpwid |
|
| 10 |
9
|
3ad2ant2 |
|
| 11 |
|
simp1 |
|
| 12 |
10 11
|
sstrd |
|
| 13 |
|
eqvisset |
|
| 14 |
|
intex |
|
| 15 |
13 14
|
sylibr |
|
| 16 |
15
|
3ad2ant3 |
|
| 17 |
|
elinel2 |
|
| 18 |
17
|
3ad2ant2 |
|
| 19 |
12 16 18
|
3jca |
|
| 20 |
19
|
3expib |
|
| 21 |
|
pm2.27 |
|
| 22 |
20 21
|
syl6 |
|
| 23 |
|
eleq1 |
|
| 24 |
23
|
biimprd |
|
| 25 |
24
|
adantl |
|
| 26 |
25
|
a1i |
|
| 27 |
22 26
|
syldd |
|
| 28 |
27
|
com23 |
|
| 29 |
28
|
alimdv |
|
| 30 |
7 29
|
biimtrid |
|
| 31 |
30
|
imp |
|
| 32 |
|
19.23v |
|
| 33 |
31 32
|
sylib |
|
| 34 |
6 33
|
biimtrid |
|
| 35 |
5 34
|
sylan9 |
|
| 36 |
35
|
ssrdv |
|
| 37 |
36
|
ex |
|
| 38 |
37
|
alrimiv |
|
| 39 |
|
ssintab |
|
| 40 |
38 39
|
sylibr |
|
| 41 |
|
ssfii |
|
| 42 |
|
fiin |
|
| 43 |
42
|
rgen2 |
|
| 44 |
|
fvex |
|
| 45 |
|
sseq2 |
|
| 46 |
|
eleq2 |
|
| 47 |
46
|
raleqbi1dv |
|
| 48 |
47
|
raleqbi1dv |
|
| 49 |
45 48
|
anbi12d |
|
| 50 |
44 49
|
elab |
|
| 51 |
41 43 50
|
sylanblrc |
|
| 52 |
|
intss1 |
|
| 53 |
51 52
|
syl |
|
| 54 |
40 53
|
eqssd |
|
| 55 |
1 54
|
syl |
|