Metamath Proof Explorer


Theorem dffin7-2

Description: Class form of isfin7-2 . (Contributed by Mario Carneiro, 17-May-2015)

Ref Expression
Assertion dffin7-2 FinVII = Fin V dom card

Proof

Step Hyp Ref Expression
1 imor x dom card x Fin ¬ x dom card x Fin
2 isfin7-2 x V x FinVII x dom card x Fin
3 2 elv x FinVII x dom card x Fin
4 elun x Fin V dom card x Fin x V dom card
5 orcom x Fin x V dom card x V dom card x Fin
6 vex x V
7 eldif x V dom card x V ¬ x dom card
8 6 7 mpbiran x V dom card ¬ x dom card
9 8 orbi1i x V dom card x Fin ¬ x dom card x Fin
10 4 5 9 3bitri x Fin V dom card ¬ x dom card x Fin
11 1 3 10 3bitr4i x FinVII x Fin V dom card
12 11 eqriv FinVII = Fin V dom card