Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Infinity
Eight inequivalent definitions of finite set
dffin7-2
Next ⟩
dfacfin7
Metamath Proof Explorer
Ascii
Unicode
Theorem
dffin7-2
Description:
Class form of
isfin7-2
.
(Contributed by
Mario Carneiro
, 17-May-2015)
Ref
Expression
Assertion
dffin7-2
⊢
Fin
VII
=
Fin
∪
V
∖
dom
⁡
card
Proof
Step
Hyp
Ref
Expression
1
imor
⊢
x
∈
dom
⁡
card
→
x
∈
Fin
↔
¬
x
∈
dom
⁡
card
∨
x
∈
Fin
2
isfin7-2
⊢
x
∈
V
→
x
∈
Fin
VII
↔
x
∈
dom
⁡
card
→
x
∈
Fin
3
2
elv
⊢
x
∈
Fin
VII
↔
x
∈
dom
⁡
card
→
x
∈
Fin
4
elun
⊢
x
∈
Fin
∪
V
∖
dom
⁡
card
↔
x
∈
Fin
∨
x
∈
V
∖
dom
⁡
card
5
orcom
⊢
x
∈
Fin
∨
x
∈
V
∖
dom
⁡
card
↔
x
∈
V
∖
dom
⁡
card
∨
x
∈
Fin
6
vex
⊢
x
∈
V
7
eldif
⊢
x
∈
V
∖
dom
⁡
card
↔
x
∈
V
∧
¬
x
∈
dom
⁡
card
8
6
7
mpbiran
⊢
x
∈
V
∖
dom
⁡
card
↔
¬
x
∈
dom
⁡
card
9
8
orbi1i
⊢
x
∈
V
∖
dom
⁡
card
∨
x
∈
Fin
↔
¬
x
∈
dom
⁡
card
∨
x
∈
Fin
10
4
5
9
3bitri
⊢
x
∈
Fin
∪
V
∖
dom
⁡
card
↔
¬
x
∈
dom
⁡
card
∨
x
∈
Fin
11
1
3
10
3bitr4i
⊢
x
∈
Fin
VII
↔
x
∈
Fin
∪
V
∖
dom
⁡
card
12
11
eqriv
⊢
Fin
VII
=
Fin
∪
V
∖
dom
⁡
card