Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
dffo2
Next ⟩
foima
Metamath Proof Explorer
Ascii
Unicode
Theorem
dffo2
Description:
Alternate definition of an onto function.
(Contributed by
NM
, 22-Mar-2006)
Ref
Expression
Assertion
dffo2
⊢
F
:
A
⟶
onto
B
↔
F
:
A
⟶
B
∧
ran
⁡
F
=
B
Proof
Step
Hyp
Ref
Expression
1
fof
⊢
F
:
A
⟶
onto
B
→
F
:
A
⟶
B
2
forn
⊢
F
:
A
⟶
onto
B
→
ran
⁡
F
=
B
3
1
2
jca
⊢
F
:
A
⟶
onto
B
→
F
:
A
⟶
B
∧
ran
⁡
F
=
B
4
ffn
⊢
F
:
A
⟶
B
→
F
Fn
A
5
df-fo
⊢
F
:
A
⟶
onto
B
↔
F
Fn
A
∧
ran
⁡
F
=
B
6
5
biimpri
⊢
F
Fn
A
∧
ran
⁡
F
=
B
→
F
:
A
⟶
onto
B
7
4
6
sylan
⊢
F
:
A
⟶
B
∧
ran
⁡
F
=
B
→
F
:
A
⟶
onto
B
8
3
7
impbii
⊢
F
:
A
⟶
onto
B
↔
F
:
A
⟶
B
∧
ran
⁡
F
=
B