Metamath Proof Explorer


Theorem dffr2

Description: Alternate definition of well-founded relation. Similar to Definition 6.21 of TakeutiZaring p. 30. (Contributed by NM, 17-Feb-2004) (Proof shortened by Andrew Salmon, 27-Aug-2011) (Proof shortened by Mario Carneiro, 23-Jun-2015) Avoid ax-10 , ax-11 , ax-12 , but use ax-8 . (Revised by Gino Giotto, 3-Oct-2024)

Ref Expression
Assertion dffr2 R Fr A x x A x y x z x | z R y =

Proof

Step Hyp Ref Expression
1 df-fr R Fr A x x A x y x w x ¬ w R y
2 breq1 z = w z R y w R y
3 2 rabeq0w z x | z R y = w x ¬ w R y
4 3 rexbii y x z x | z R y = y x w x ¬ w R y
5 4 imbi2i x A x y x z x | z R y = x A x y x w x ¬ w R y
6 5 albii x x A x y x z x | z R y = x x A x y x w x ¬ w R y
7 1 6 bitr4i R Fr A x x A x y x z x | z R y =