Metamath Proof Explorer


Theorem dffr2ALT

Description: Alternate proof of dffr2 , which avoids ax-8 but requires ax-10 , ax-11 , ax-12 . (Contributed by NM, 17-Feb-2004) (Proof shortened by Andrew Salmon, 27-Aug-2011) (Proof shortened by Mario Carneiro, 23-Jun-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion dffr2ALT R Fr A x x A x y x z x | z R y =

Proof

Step Hyp Ref Expression
1 df-fr R Fr A x x A x y x z x ¬ z R y
2 rabeq0 z x | z R y = z x ¬ z R y
3 2 rexbii y x z x | z R y = y x z x ¬ z R y
4 3 imbi2i x A x y x z x | z R y = x A x y x z x ¬ z R y
5 4 albii x x A x y x z x | z R y = x x A x y x z x ¬ z R y
6 1 5 bitr4i R Fr A x x A x y x z x | z R y =