Metamath Proof Explorer


Theorem dffr3

Description: Alternate definition of well-founded relation. Definition 6.21 of TakeutiZaring p. 30. (Contributed by NM, 23-Apr-2004) (Revised by Mario Carneiro, 23-Jun-2015)

Ref Expression
Assertion dffr3 R Fr A x x A x y x x R -1 y =

Proof

Step Hyp Ref Expression
1 dffr2 R Fr A x x A x y x z x | z R y =
2 iniseg y V R -1 y = z | z R y
3 2 elv R -1 y = z | z R y
4 3 ineq2i x R -1 y = x z | z R y
5 dfrab3 z x | z R y = x z | z R y
6 4 5 eqtr4i x R -1 y = z x | z R y
7 6 eqeq1i x R -1 y = z x | z R y =
8 7 rexbii y x x R -1 y = y x z x | z R y =
9 8 imbi2i x A x y x x R -1 y = x A x y x z x | z R y =
10 9 albii x x A x y x x R -1 y = x x A x y x z x | z R y =
11 1 10 bitr4i R Fr A x x A x y x x R -1 y =