Metamath Proof Explorer


Theorem dffr4

Description: Alternate definition of well-founded relation. (Contributed by Scott Fenton, 2-Feb-2011)

Ref Expression
Assertion dffr4 R Fr A x x A x y x Pred R x y =

Proof

Step Hyp Ref Expression
1 dffr3 R Fr A x x A x y x x R -1 y =
2 df-pred Pred R x y = x R -1 y
3 2 eqeq1i Pred R x y = x R -1 y =
4 3 rexbii y x Pred R x y = y x x R -1 y =
5 4 imbi2i x A x y x Pred R x y = x A x y x x R -1 y =
6 5 albii x x A x y x Pred R x y = x x A x y x x R -1 y =
7 1 6 bitr4i R Fr A x x A x y x Pred R x y =