Metamath Proof Explorer


Theorem dffun2OLDOLD

Description: Obsolete version of dffun2 as of 11-Dec-2024. (Contributed by NM, 29-Dec-1996) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion dffun2OLDOLD FunARelAxyzxAyxAzy=z

Proof

Step Hyp Ref Expression
1 df-fun FunARelAAA-1I
2 df-id I=yz|y=z
3 2 sseq2i AA-1IAA-1yz|y=z
4 df-co AA-1=yz|xyA-1xxAz
5 4 sseq1i AA-1yz|y=zyz|xyA-1xxAzyz|y=z
6 ssopab2bw yz|xyA-1xxAzyz|y=zyzxyA-1xxAzy=z
7 3 5 6 3bitri AA-1IyzxyA-1xxAzy=z
8 vex yV
9 vex xV
10 8 9 brcnv yA-1xxAy
11 10 anbi1i yA-1xxAzxAyxAz
12 11 exbii xyA-1xxAzxxAyxAz
13 12 imbi1i xyA-1xxAzy=zxxAyxAzy=z
14 19.23v xxAyxAzy=zxxAyxAzy=z
15 13 14 bitr4i xyA-1xxAzy=zxxAyxAzy=z
16 15 albii zxyA-1xxAzy=zzxxAyxAzy=z
17 alcom zxxAyxAzy=zxzxAyxAzy=z
18 16 17 bitri zxyA-1xxAzy=zxzxAyxAzy=z
19 18 albii yzxyA-1xxAzy=zyxzxAyxAzy=z
20 alcom yxzxAyxAzy=zxyzxAyxAzy=z
21 7 19 20 3bitri AA-1IxyzxAyxAzy=z
22 21 anbi2i RelAAA-1IRelAxyzxAyxAzy=z
23 1 22 bitri FunARelAxyzxAyxAzy=z