Metamath Proof Explorer


Theorem dffun9

Description: Alternate definition of a function. (Contributed by NM, 28-Mar-2007) (Revised by NM, 16-Jun-2017)

Ref Expression
Assertion dffun9 Fun A Rel A x dom A * y ran A x A y

Proof

Step Hyp Ref Expression
1 dffun7 Fun A Rel A x dom A * y x A y
2 vex x V
3 vex y V
4 2 3 brelrn x A y y ran A
5 4 pm4.71ri x A y y ran A x A y
6 5 mobii * y x A y * y y ran A x A y
7 df-rmo * y ran A x A y * y y ran A x A y
8 6 7 bitr4i * y x A y * y ran A x A y
9 8 ralbii x dom A * y x A y x dom A * y ran A x A y
10 9 anbi2i Rel A x dom A * y x A y Rel A x dom A * y ran A x A y
11 1 10 bitri Fun A Rel A x dom A * y ran A x A y