Step |
Hyp |
Ref |
Expression |
1 |
|
dfgrp3.b |
|
2 |
|
dfgrp3.p |
|
3 |
1 2
|
dfgrp3 |
|
4 |
|
simp2 |
|
5 |
|
sgrpmgm |
|
6 |
5
|
adantr |
|
7 |
6
|
adantr |
|
8 |
|
simpr |
|
9 |
8
|
adantr |
|
10 |
|
simpr |
|
11 |
1 2
|
mgmcl |
|
12 |
7 9 10 11
|
syl3anc |
|
13 |
12
|
adantr |
|
14 |
1 2
|
sgrpass |
|
15 |
14
|
3anassrs |
|
16 |
15
|
ralrimiva |
|
17 |
16
|
adantr |
|
18 |
|
simpr |
|
19 |
13 17 18
|
3jca |
|
20 |
19
|
ex |
|
21 |
20
|
ralimdva |
|
22 |
21
|
ralimdva |
|
23 |
22
|
a1d |
|
24 |
23
|
3imp |
|
25 |
4 24
|
jca |
|
26 |
|
n0 |
|
27 |
|
3simpa |
|
28 |
27
|
2ralimi |
|
29 |
1 2
|
issgrpn0 |
|
30 |
28 29
|
imbitrrid |
|
31 |
30
|
exlimiv |
|
32 |
26 31
|
sylbi |
|
33 |
32
|
imp |
|
34 |
|
simpl |
|
35 |
|
simp3 |
|
36 |
35
|
2ralimi |
|
37 |
36
|
adantl |
|
38 |
33 34 37
|
3jca |
|
39 |
25 38
|
impbii |
|
40 |
3 39
|
bitri |
|