| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfgrp3.b |
|
| 2 |
|
dfgrp3.p |
|
| 3 |
|
simp2 |
|
| 4 |
|
n0 |
|
| 5 |
3 4
|
sylib |
|
| 6 |
|
oveq2 |
|
| 7 |
6
|
eqeq1d |
|
| 8 |
7
|
rexbidv |
|
| 9 |
|
oveq1 |
|
| 10 |
9
|
eqeq1d |
|
| 11 |
10
|
rexbidv |
|
| 12 |
8 11
|
anbi12d |
|
| 13 |
12
|
ralbidv |
|
| 14 |
13
|
rspcv |
|
| 15 |
|
eqeq2 |
|
| 16 |
15
|
rexbidv |
|
| 17 |
|
eqeq2 |
|
| 18 |
17
|
rexbidv |
|
| 19 |
16 18
|
anbi12d |
|
| 20 |
19
|
rspcva |
|
| 21 |
|
oveq1 |
|
| 22 |
21
|
eqeq1d |
|
| 23 |
22
|
cbvrexvw |
|
| 24 |
23
|
biimpi |
|
| 25 |
24
|
adantr |
|
| 26 |
20 25
|
syl |
|
| 27 |
26
|
ex |
|
| 28 |
14 27
|
syldc |
|
| 29 |
28
|
3ad2ant3 |
|
| 30 |
29
|
imp |
|
| 31 |
|
eqeq2 |
|
| 32 |
31
|
rexbidv |
|
| 33 |
|
eqeq2 |
|
| 34 |
33
|
rexbidv |
|
| 35 |
32 34
|
anbi12d |
|
| 36 |
12 35
|
rspc2va |
|
| 37 |
36
|
simprd |
|
| 38 |
37
|
expcom |
|
| 39 |
38
|
3ad2ant3 |
|
| 40 |
39
|
impl |
|
| 41 |
40
|
ad2ant2r |
|
| 42 |
|
oveq2 |
|
| 43 |
42
|
eqeq1d |
|
| 44 |
43
|
cbvrexvw |
|
| 45 |
|
simpll1 |
|
| 46 |
45
|
adantr |
|
| 47 |
|
simplr |
|
| 48 |
|
simpllr |
|
| 49 |
|
simprr |
|
| 50 |
1 2
|
sgrpass |
|
| 51 |
46 47 48 49 50
|
syl13anc |
|
| 52 |
|
simprl |
|
| 53 |
52
|
oveq1d |
|
| 54 |
51 53
|
eqtr3d |
|
| 55 |
54
|
anassrs |
|
| 56 |
|
oveq2 |
|
| 57 |
|
id |
|
| 58 |
56 57
|
eqeq12d |
|
| 59 |
55 58
|
syl5ibcom |
|
| 60 |
59
|
rexlimdva |
|
| 61 |
44 60
|
biimtrid |
|
| 62 |
61
|
adantrl |
|
| 63 |
41 62
|
mpd |
|
| 64 |
|
oveq2 |
|
| 65 |
64
|
eqeq1d |
|
| 66 |
65
|
rexbidv |
|
| 67 |
|
oveq1 |
|
| 68 |
67
|
eqeq1d |
|
| 69 |
68
|
rexbidv |
|
| 70 |
66 69
|
anbi12d |
|
| 71 |
|
eqeq2 |
|
| 72 |
71
|
rexbidv |
|
| 73 |
|
eqeq2 |
|
| 74 |
73
|
rexbidv |
|
| 75 |
72 74
|
anbi12d |
|
| 76 |
70 75
|
rspc2va |
|
| 77 |
76
|
simpld |
|
| 78 |
77
|
ex |
|
| 79 |
78
|
ancoms |
|
| 80 |
79
|
com12 |
|
| 81 |
80
|
3ad2ant3 |
|
| 82 |
81
|
impl |
|
| 83 |
|
oveq1 |
|
| 84 |
83
|
eqeq1d |
|
| 85 |
84
|
cbvrexvw |
|
| 86 |
82 85
|
sylib |
|
| 87 |
86
|
adantllr |
|
| 88 |
87
|
adantrr |
|
| 89 |
63 88
|
jca |
|
| 90 |
89
|
expr |
|
| 91 |
90
|
ralrimdva |
|
| 92 |
91
|
reximdva |
|
| 93 |
30 92
|
mpd |
|
| 94 |
5 93
|
exlimddv |
|