Step |
Hyp |
Ref |
Expression |
1 |
|
dfgrp3.b |
|
2 |
|
dfgrp3.p |
|
3 |
|
simp2 |
|
4 |
|
n0 |
|
5 |
3 4
|
sylib |
|
6 |
|
oveq2 |
|
7 |
6
|
eqeq1d |
|
8 |
7
|
rexbidv |
|
9 |
|
oveq1 |
|
10 |
9
|
eqeq1d |
|
11 |
10
|
rexbidv |
|
12 |
8 11
|
anbi12d |
|
13 |
12
|
ralbidv |
|
14 |
13
|
rspcv |
|
15 |
|
eqeq2 |
|
16 |
15
|
rexbidv |
|
17 |
|
eqeq2 |
|
18 |
17
|
rexbidv |
|
19 |
16 18
|
anbi12d |
|
20 |
19
|
rspcva |
|
21 |
|
oveq1 |
|
22 |
21
|
eqeq1d |
|
23 |
22
|
cbvrexvw |
|
24 |
23
|
biimpi |
|
25 |
24
|
adantr |
|
26 |
20 25
|
syl |
|
27 |
26
|
ex |
|
28 |
14 27
|
syldc |
|
29 |
28
|
3ad2ant3 |
|
30 |
29
|
imp |
|
31 |
|
eqeq2 |
|
32 |
31
|
rexbidv |
|
33 |
|
eqeq2 |
|
34 |
33
|
rexbidv |
|
35 |
32 34
|
anbi12d |
|
36 |
12 35
|
rspc2va |
|
37 |
36
|
simprd |
|
38 |
37
|
expcom |
|
39 |
38
|
3ad2ant3 |
|
40 |
39
|
impl |
|
41 |
40
|
ad2ant2r |
|
42 |
|
oveq2 |
|
43 |
42
|
eqeq1d |
|
44 |
43
|
cbvrexvw |
|
45 |
|
simpll1 |
|
46 |
45
|
adantr |
|
47 |
|
simplr |
|
48 |
|
simpllr |
|
49 |
|
simprr |
|
50 |
1 2
|
sgrpass |
|
51 |
46 47 48 49 50
|
syl13anc |
|
52 |
|
simprl |
|
53 |
52
|
oveq1d |
|
54 |
51 53
|
eqtr3d |
|
55 |
54
|
anassrs |
|
56 |
|
oveq2 |
|
57 |
|
id |
|
58 |
56 57
|
eqeq12d |
|
59 |
55 58
|
syl5ibcom |
|
60 |
59
|
rexlimdva |
|
61 |
44 60
|
biimtrid |
|
62 |
61
|
adantrl |
|
63 |
41 62
|
mpd |
|
64 |
|
oveq2 |
|
65 |
64
|
eqeq1d |
|
66 |
65
|
rexbidv |
|
67 |
|
oveq1 |
|
68 |
67
|
eqeq1d |
|
69 |
68
|
rexbidv |
|
70 |
66 69
|
anbi12d |
|
71 |
|
eqeq2 |
|
72 |
71
|
rexbidv |
|
73 |
|
eqeq2 |
|
74 |
73
|
rexbidv |
|
75 |
72 74
|
anbi12d |
|
76 |
70 75
|
rspc2va |
|
77 |
76
|
simpld |
|
78 |
77
|
ex |
|
79 |
78
|
ancoms |
|
80 |
79
|
com12 |
|
81 |
80
|
3ad2ant3 |
|
82 |
81
|
impl |
|
83 |
|
oveq1 |
|
84 |
83
|
eqeq1d |
|
85 |
84
|
cbvrexvw |
|
86 |
82 85
|
sylib |
|
87 |
86
|
adantllr |
|
88 |
87
|
adantrr |
|
89 |
63 88
|
jca |
|
90 |
89
|
expr |
|
91 |
90
|
ralrimdva |
|
92 |
91
|
reximdva |
|
93 |
30 92
|
mpd |
|
94 |
5 93
|
exlimddv |
|