Metamath Proof Explorer


Theorem dfif2

Description: An alternate definition of the conditional operator df-if with one fewer connectives (but probably less intuitive to understand). (Contributed by NM, 30-Jan-2006)

Ref Expression
Assertion dfif2 if φ A B = x | x B φ x A φ

Proof

Step Hyp Ref Expression
1 df-if if φ A B = x | x A φ x B ¬ φ
2 df-or x B ¬ φ x A φ ¬ x B ¬ φ x A φ
3 orcom x A φ x B ¬ φ x B ¬ φ x A φ
4 iman x B φ ¬ x B ¬ φ
5 4 imbi1i x B φ x A φ ¬ x B ¬ φ x A φ
6 2 3 5 3bitr4i x A φ x B ¬ φ x B φ x A φ
7 6 abbii x | x A φ x B ¬ φ = x | x B φ x A φ
8 1 7 eqtri if φ A B = x | x B φ x A φ