Metamath Proof Explorer


Theorem dfif3

Description: Alternate definition of the conditional operator df-if . Note that ph is independent of x i.e. a constant true or false. (Contributed by NM, 25-Aug-2013) (Revised by Mario Carneiro, 8-Sep-2013)

Ref Expression
Hypothesis dfif3.1 C = x | φ
Assertion dfif3 if φ A B = A C B V C

Proof

Step Hyp Ref Expression
1 dfif3.1 C = x | φ
2 dfif6 if φ A B = y A | φ y B | ¬ φ
3 biidd x = y φ φ
4 3 cbvabv x | φ = y | φ
5 1 4 eqtri C = y | φ
6 5 ineq2i A C = A y | φ
7 dfrab3 y A | φ = A y | φ
8 6 7 eqtr4i A C = y A | φ
9 dfrab3 y B | ¬ φ = B y | ¬ φ
10 biidd y = z φ φ
11 10 notabw y | ¬ φ = V z | φ
12 biidd x = z φ φ
13 12 cbvabv x | φ = z | φ
14 1 13 eqtri C = z | φ
15 14 difeq2i V C = V z | φ
16 11 15 eqtr4i y | ¬ φ = V C
17 16 ineq2i B y | ¬ φ = B V C
18 9 17 eqtr2i B V C = y B | ¬ φ
19 8 18 uneq12i A C B V C = y A | φ y B | ¬ φ
20 2 19 eqtr4i if φ A B = A C B V C