Metamath Proof Explorer


Theorem dfif4

Description: Alternate definition of the conditional operator df-if . Note that ph is independent of x i.e. a constant true or false. (Contributed by NM, 25-Aug-2013)

Ref Expression
Hypothesis dfif3.1 C = x | φ
Assertion dfif4 if φ A B = A B A V C B C

Proof

Step Hyp Ref Expression
1 dfif3.1 C = x | φ
2 1 dfif3 if φ A B = A C B V C
3 undir A C B V C = A B V C C B V C
4 undi A B V C = A B A V C
5 undi C B V C = C B C V C
6 uncom C B = B C
7 unvdif C V C = V
8 6 7 ineq12i C B C V C = B C V
9 inv1 B C V = B C
10 5 8 9 3eqtri C B V C = B C
11 4 10 ineq12i A B V C C B V C = A B A V C B C
12 inass A B A V C B C = A B A V C B C
13 11 12 eqtri A B V C C B V C = A B A V C B C
14 2 3 13 3eqtri if φ A B = A B A V C B C