Metamath Proof Explorer


Theorem dfifp3

Description: Alternate definition of the conditional operator for propositions. (Contributed by BJ, 30-Sep-2019)

Ref Expression
Assertion dfifp3 if- φ ψ χ φ ψ φ χ

Proof

Step Hyp Ref Expression
1 dfifp2 if- φ ψ χ φ ψ ¬ φ χ
2 pm4.64 ¬ φ χ φ χ
3 2 anbi2i φ ψ ¬ φ χ φ ψ φ χ
4 1 3 bitri if- φ ψ χ φ ψ φ χ