Metamath Proof Explorer


Theorem dfifp4

Description: Alternate definition of the conditional operator for propositions. (Contributed by BJ, 30-Sep-2019)

Ref Expression
Assertion dfifp4 if- φ ψ χ ¬ φ ψ φ χ

Proof

Step Hyp Ref Expression
1 dfifp3 if- φ ψ χ φ ψ φ χ
2 imor φ ψ ¬ φ ψ
3 2 anbi1i φ ψ φ χ ¬ φ ψ φ χ
4 1 3 bitri if- φ ψ χ ¬ φ ψ φ χ