Metamath Proof Explorer


Theorem dfifp5

Description: Alternate definition of the conditional operator for propositions. (Contributed by BJ, 2-Oct-2019)

Ref Expression
Assertion dfifp5 if- φ ψ χ ¬ φ ψ ¬ φ χ

Proof

Step Hyp Ref Expression
1 dfifp2 if- φ ψ χ φ ψ ¬ φ χ
2 imor φ ψ ¬ φ ψ
3 2 anbi1i φ ψ ¬ φ χ ¬ φ ψ ¬ φ χ
4 1 3 bitri if- φ ψ χ ¬ φ ψ ¬ φ χ