Metamath Proof Explorer


Theorem dfii3

Description: Alternate definition of the unit interval. (Contributed by Jeff Madsen, 11-Jun-2010) (Revised by Mario Carneiro, 3-Sep-2015)

Ref Expression
Hypothesis dfii3.1 J = TopOpen fld
Assertion dfii3 II = J 𝑡 0 1

Proof

Step Hyp Ref Expression
1 dfii3.1 J = TopOpen fld
2 cnxmet abs ∞Met
3 unitssre 0 1
4 ax-resscn
5 3 4 sstri 0 1
6 eqid abs 0 1 × 0 1 = abs 0 1 × 0 1
7 1 cnfldtopn J = MetOpen abs
8 df-ii II = MetOpen abs 0 1 × 0 1
9 6 7 8 metrest abs ∞Met 0 1 J 𝑡 0 1 = II
10 2 5 9 mp2an J 𝑡 0 1 = II
11 10 eqcomi II = J 𝑡 0 1