Metamath Proof Explorer


Theorem dfii4

Description: Alternate definition of the unit interval. (Contributed by Mario Carneiro, 3-Sep-2015)

Ref Expression
Hypothesis dfii4.1 I = fld 𝑠 0 1
Assertion dfii4 II = TopOpen I

Proof

Step Hyp Ref Expression
1 dfii4.1 I = fld 𝑠 0 1
2 eqid TopOpen fld = TopOpen fld
3 2 dfii3 II = TopOpen fld 𝑡 0 1
4 1 2 resstopn TopOpen fld 𝑡 0 1 = TopOpen I
5 3 4 eqtri II = TopOpen I