Metamath Proof Explorer


Theorem dfii5

Description: The unit interval expressed as an order topology. (Contributed by Mario Carneiro, 9-Sep-2015)

Ref Expression
Assertion dfii5 II = ordTop 0 1 × 0 1

Proof

Step Hyp Ref Expression
1 dfii2 II = topGen ran . 𝑡 0 1
2 unitssre 0 1
3 eqid ordTop = ordTop
4 eqid topGen ran . = topGen ran .
5 3 4 xrrest 0 1 ordTop 𝑡 0 1 = topGen ran . 𝑡 0 1
6 2 5 ax-mp ordTop 𝑡 0 1 = topGen ran . 𝑡 0 1
7 ordtresticc ordTop 𝑡 0 1 = ordTop 0 1 × 0 1
8 1 6 7 3eqtr2i II = ordTop 0 1 × 0 1