Metamath Proof Explorer


Theorem dfima3

Description: Alternate definition of image. Compare definition (d) of Enderton p. 44. (Contributed by NM, 14-Aug-1994) (Proof shortened by Andrew Salmon, 27-Aug-2011)

Ref Expression
Assertion dfima3 A B = y | x x B x y A

Proof

Step Hyp Ref Expression
1 dfima2 A B = y | x B x A y
2 df-br x A y x y A
3 2 rexbii x B x A y x B x y A
4 df-rex x B x y A x x B x y A
5 3 4 bitri x B x A y x x B x y A
6 5 abbii y | x B x A y = y | x x B x y A
7 1 6 eqtri A B = y | x x B x y A