Metamath Proof Explorer


Theorem dfimafn

Description: Alternate definition of the image of a function. (Contributed by Raph Levien, 20-Nov-2006)

Ref Expression
Assertion dfimafn Fun F A dom F F A = y | x A F x = y

Proof

Step Hyp Ref Expression
1 dfima2 F A = y | x A x F y
2 ssel A dom F x A x dom F
3 funbrfvb Fun F x dom F F x = y x F y
4 3 ex Fun F x dom F F x = y x F y
5 2 4 syl9r Fun F A dom F x A F x = y x F y
6 5 imp31 Fun F A dom F x A F x = y x F y
7 6 rexbidva Fun F A dom F x A F x = y x A x F y
8 7 abbidv Fun F A dom F y | x A F x = y = y | x A x F y
9 1 8 eqtr4id Fun F A dom F F A = y | x A F x = y