Metamath Proof Explorer


Theorem dfimafn2

Description: Alternate definition of the image of a function as an indexed union of singletons of function values. (Contributed by Raph Levien, 20-Nov-2006)

Ref Expression
Assertion dfimafn2 Fun F A dom F F A = x A F x

Proof

Step Hyp Ref Expression
1 dfimafn Fun F A dom F F A = y | x A F x = y
2 iunab x A y | F x = y = y | x A F x = y
3 1 2 eqtr4di Fun F A dom F F A = x A y | F x = y
4 df-sn F x = y | y = F x
5 eqcom y = F x F x = y
6 5 abbii y | y = F x = y | F x = y
7 4 6 eqtri F x = y | F x = y
8 7 a1i x A F x = y | F x = y
9 8 iuneq2i x A F x = x A y | F x = y
10 3 9 eqtr4di Fun F A dom F F A = x A F x