Metamath Proof Explorer


Theorem dfin3

Description: Intersection defined in terms of union (De Morgan's law). Similar to Exercise 4.10(n) of Mendelson p. 231. (Contributed by NM, 8-Jan-2002)

Ref Expression
Assertion dfin3 A B = V V A V B

Proof

Step Hyp Ref Expression
1 ddif V V A V B = A V B
2 dfun2 V A V B = V V V A V B
3 ddif V V A = A
4 3 difeq1i V V A V B = A V B
5 4 difeq2i V V V A V B = V A V B
6 2 5 eqtri V A V B = V A V B
7 6 difeq2i V V A V B = V V A V B
8 dfin2 A B = A V B
9 1 7 8 3eqtr4ri A B = V V A V B