Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The intersection of a class
dfint2
Next ⟩
inteq
Metamath Proof Explorer
Ascii
Unicode
Theorem
dfint2
Description:
Alternate definition of class intersection.
(Contributed by
NM
, 28-Jun-1998)
Ref
Expression
Assertion
dfint2
⊢
⋂
A
=
x
|
∀
y
∈
A
x
∈
y
Proof
Step
Hyp
Ref
Expression
1
df-int
⊢
⋂
A
=
x
|
∀
y
y
∈
A
→
x
∈
y
2
df-ral
⊢
∀
y
∈
A
x
∈
y
↔
∀
y
y
∈
A
→
x
∈
y
3
2
abbii
⊢
x
|
∀
y
∈
A
x
∈
y
=
x
|
∀
y
y
∈
A
→
x
∈
y
4
1
3
eqtr4i
⊢
⋂
A
=
x
|
∀
y
∈
A
x
∈
y