Metamath Proof Explorer


Theorem dfint2

Description: Alternate definition of class intersection. (Contributed by NM, 28-Jun-1998)

Ref Expression
Assertion dfint2 A = x | y A x y

Proof

Step Hyp Ref Expression
1 df-int A = x | y y A x y
2 df-ral y A x y y y A x y
3 2 abbii x | y A x y = x | y y A x y
4 1 3 eqtr4i A = x | y A x y