Metamath Proof Explorer


Theorem dfioo2

Description: Alternate definition of the set of open intervals of extended reals. (Contributed by NM, 1-Mar-2007) (Revised by Mario Carneiro, 1-Sep-2015)

Ref Expression
Assertion dfioo2 . = x * , y * w | x < w w < y

Proof

Step Hyp Ref Expression
1 ioof . : * × * 𝒫
2 ffn . : * × * 𝒫 . Fn * × *
3 1 2 ax-mp . Fn * × *
4 fnov . Fn * × * . = x * , y * x y
5 3 4 mpbi . = x * , y * x y
6 iooval2 x * y * x y = w | x < w w < y
7 6 mpoeq3ia x * , y * x y = x * , y * w | x < w w < y
8 5 7 eqtri . = x * , y * w | x < w w < y