Metamath Proof Explorer


Theorem dfiop2

Description: Alternate definition of Hilbert space identity operator. (Contributed by NM, 7-Aug-2006) (New usage is discouraged.)

Ref Expression
Assertion dfiop2 I op = I

Proof

Step Hyp Ref Expression
1 df-iop I op = proj
2 helch C
3 2 pjfni proj Fn
4 fnresi I Fn
5 pjch1 x proj x = x
6 fvresi x I x = x
7 5 6 eqtr4d x proj x = I x
8 7 rgen x proj x = I x
9 eqfnfv proj Fn I Fn proj = I x proj x = I x
10 8 9 mpbiri proj Fn I Fn proj = I
11 3 4 10 mp2an proj = I
12 1 11 eqtri I op = I