Metamath Proof Explorer


Theorem dfiun2g

Description: Alternate definition of indexed union when B is a set. Definition 15(a) of Suppes p. 44. (Contributed by NM, 23-Mar-2006) (Proof shortened by Andrew Salmon, 25-Jul-2011) (Proof shortened by Rohan Ridenour, 11-Aug-2023) Avoid ax-10 , ax-12 . (Revised by SN, 11-Dec-2024)

Ref Expression
Assertion dfiun2g x A B C x A B = y | x A y = B

Proof

Step Hyp Ref Expression
1 df-iun x A B = z | x A z B
2 elisset B C z z = B
3 eleq2 z = B w z w B
4 3 pm5.32ri w z z = B w B z = B
5 4 simplbi2 w B z = B w z z = B
6 5 eximdv w B z z = B z w z z = B
7 2 6 syl5com B C w B z w z z = B
8 7 ralimi x A B C x A w B z w z z = B
9 rexim x A w B z w z z = B x A w B x A z w z z = B
10 8 9 syl x A B C x A w B x A z w z z = B
11 rexcom4 x A z w z z = B z x A w z z = B
12 r19.42v x A w z z = B w z x A z = B
13 12 exbii z x A w z z = B z w z x A z = B
14 11 13 bitri x A z w z z = B z w z x A z = B
15 10 14 imbitrdi x A B C x A w B z w z x A z = B
16 3 biimpac w z z = B w B
17 16 reximi x A w z z = B x A w B
18 12 17 sylbir w z x A z = B x A w B
19 18 exlimiv z w z x A z = B x A w B
20 15 19 impbid1 x A B C x A w B z w z x A z = B
21 vex w V
22 eleq1w z = w z B w B
23 22 rexbidv z = w x A z B x A w B
24 21 23 elab w z | x A z B x A w B
25 eluni w y | x A y = B z w z z y | x A y = B
26 vex z V
27 eqeq1 y = z y = B z = B
28 27 rexbidv y = z x A y = B x A z = B
29 26 28 elab z y | x A y = B x A z = B
30 29 anbi2i w z z y | x A y = B w z x A z = B
31 30 exbii z w z z y | x A y = B z w z x A z = B
32 25 31 bitri w y | x A y = B z w z x A z = B
33 20 24 32 3bitr4g x A B C w z | x A z B w y | x A y = B
34 33 eqrdv x A B C z | x A z B = y | x A y = B
35 1 34 eqtrid x A B C x A B = y | x A y = B