Metamath Proof Explorer


Theorem dfle2

Description: Alternative definition of 'less than or equal to' in terms of 'less than'. (Contributed by Mario Carneiro, 6-Nov-2015)

Ref Expression
Assertion dfle2 = < I *

Proof

Step Hyp Ref Expression
1 lerel Rel
2 ltrelxr < * × *
3 idssxp I * * × *
4 2 3 unssi < I * * × *
5 relxp Rel * × *
6 relss < I * * × * Rel * × * Rel < I *
7 4 5 6 mp2 Rel < I *
8 lerelxr * × *
9 8 brel x y x * y *
10 4 brel x < I * y x * y *
11 xrleloe x * y * x y x < y x = y
12 resieq x * y * x I * y x = y
13 12 orbi2d x * y * x < y x I * y x < y x = y
14 11 13 bitr4d x * y * x y x < y x I * y
15 brun x < I * y x < y x I * y
16 14 15 bitr4di x * y * x y x < I * y
17 9 10 16 pm5.21nii x y x < I * y
18 1 7 17 eqbrriv = < I *