Metamath Proof Explorer


Theorem dflidl2rng

Description: Alternate (the usual textbook) definition of a (left) ideal of a non-unital ring to be a subgroup of the additive group of the ring which is closed under left-multiplication by elements of the full ring. (Contributed by AV, 21-Mar-2025)

Ref Expression
Hypotheses dflidl2rng.u U = LIdeal R
dflidl2rng.b B = Base R
dflidl2rng.t · ˙ = R
Assertion dflidl2rng R Rng I SubGrp R I U x B y I x · ˙ y I

Proof

Step Hyp Ref Expression
1 dflidl2rng.u U = LIdeal R
2 dflidl2rng.b B = Base R
3 dflidl2rng.t · ˙ = R
4 simpll R Rng I SubGrp R I U R Rng
5 simpr R Rng I SubGrp R I U I U
6 eqid 0 R = 0 R
7 6 subg0cl I SubGrp R 0 R I
8 7 ad2antlr R Rng I SubGrp R I U 0 R I
9 4 5 8 3jca R Rng I SubGrp R I U R Rng I U 0 R I
10 6 2 3 1 rnglidlmcl R Rng I U 0 R I x B y I x · ˙ y I
11 9 10 sylan R Rng I SubGrp R I U x B y I x · ˙ y I
12 11 ralrimivva R Rng I SubGrp R I U x B y I x · ˙ y I
13 2 subgss I SubGrp R I B
14 13 ad2antlr R Rng I SubGrp R x B y I x · ˙ y I I B
15 7 ne0d I SubGrp R I
16 15 ad2antlr R Rng I SubGrp R x B y I x · ˙ y I I
17 eqid + R = + R
18 17 subgcl I SubGrp R x · ˙ y I z I x · ˙ y + R z I
19 18 ad5ant245 R Rng I SubGrp R x B y I x · ˙ y I z I x · ˙ y + R z I
20 19 ralrimiva R Rng I SubGrp R x B y I x · ˙ y I z I x · ˙ y + R z I
21 20 ex R Rng I SubGrp R x B y I x · ˙ y I z I x · ˙ y + R z I
22 21 ralimdvva R Rng I SubGrp R x B y I x · ˙ y I x B y I z I x · ˙ y + R z I
23 22 imp R Rng I SubGrp R x B y I x · ˙ y I x B y I z I x · ˙ y + R z I
24 1 2 17 3 islidl I U I B I x B y I z I x · ˙ y + R z I
25 14 16 23 24 syl3anbrc R Rng I SubGrp R x B y I x · ˙ y I I U
26 12 25 impbida R Rng I SubGrp R I U x B y I x · ˙ y I