Metamath Proof Explorer


Theorem dflim2

Description: An alternate definition of a limit ordinal. (Contributed by NM, 4-Nov-2004)

Ref Expression
Assertion dflim2 Lim A Ord A A A = A

Proof

Step Hyp Ref Expression
1 df-lim Lim A Ord A A A = A
2 ord0eln0 Ord A A A
3 2 anbi1d Ord A A A = A A A = A
4 3 pm5.32i Ord A A A = A Ord A A A = A
5 3anass Ord A A A = A Ord A A A = A
6 3anass Ord A A A = A Ord A A A = A
7 4 5 6 3bitr4i Ord A A A = A Ord A A A = A
8 1 7 bitr4i Lim A Ord A A A = A