Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Ordinals
dflim2
Next ⟩
inton
Metamath Proof Explorer
Ascii
Unicode
Theorem
dflim2
Description:
An alternate definition of a limit ordinal.
(Contributed by
NM
, 4-Nov-2004)
Ref
Expression
Assertion
dflim2
⊢
Lim
⁡
A
↔
Ord
⁡
A
∧
∅
∈
A
∧
A
=
⋃
A
Proof
Step
Hyp
Ref
Expression
1
df-lim
⊢
Lim
⁡
A
↔
Ord
⁡
A
∧
A
≠
∅
∧
A
=
⋃
A
2
ord0eln0
⊢
Ord
⁡
A
→
∅
∈
A
↔
A
≠
∅
3
2
anbi1d
⊢
Ord
⁡
A
→
∅
∈
A
∧
A
=
⋃
A
↔
A
≠
∅
∧
A
=
⋃
A
4
3
pm5.32i
⊢
Ord
⁡
A
∧
∅
∈
A
∧
A
=
⋃
A
↔
Ord
⁡
A
∧
A
≠
∅
∧
A
=
⋃
A
5
3anass
⊢
Ord
⁡
A
∧
∅
∈
A
∧
A
=
⋃
A
↔
Ord
⁡
A
∧
∅
∈
A
∧
A
=
⋃
A
6
3anass
⊢
Ord
⁡
A
∧
A
≠
∅
∧
A
=
⋃
A
↔
Ord
⁡
A
∧
A
≠
∅
∧
A
=
⋃
A
7
4
5
6
3bitr4i
⊢
Ord
⁡
A
∧
∅
∈
A
∧
A
=
⋃
A
↔
Ord
⁡
A
∧
A
≠
∅
∧
A
=
⋃
A
8
1
7
bitr4i
⊢
Lim
⁡
A
↔
Ord
⁡
A
∧
∅
∈
A
∧
A
=
⋃
A